COMUNE DI COLICO

Provincia di Lecco

RISTRUTTURAZIONE E RIGENERAZIONE DELL'EX "COLLEGIO SACRO CUORE" A SEDE DEL NUOVO CAMPUS SCOLASTICO DELL'ISTITUTO COMPRENSIVO STATALE "GALILEO GALILEI" DI COLICO - SCUOLA PRIMARIA E SCUOLA SECONDARIA DI PRIMO GRADO. Colico (Lc) - Via Sacro Cuore, Via Bacco, Via Campione, al fine della programmazione degli interventi di cui alla D.G.R. 16.03.2015 - n° 103293 in attuazione dell'art. 10 del D.L. 104/2013 e D.M. 128/2015

PROGETTO ESECUTIVO

OGGETTO:			
RELAZIONE SULLA VALUTAZIONE DEL RISCHIO E PROTEZIONE CONTRO I FULMINI			
Sc.le.5	DATA: SETTEMBRE 2015		SCALA:
PROGETTISTA:		PROGETTISTA:	
Arch. CAROLA MARIANI Iscritto all'Ordine degli Architetti della Provincia di Como al nº 928		Arch. ROBERTO RABBIOSI Iscritto all'Ordine degli Architetti della Provincia di Sondrio al nº 276	
PROGETTISTA:		PROGETTISTA:	
Arch. MAURIZIO CORBETTA Iscritto all'Ordine degli Architetti della Provincia di Lecco al nº 255		Ing. ATTILIO BALITRO Iscritto all'Ordine degli Ingegneri della Provincia di Sondrio al nº 144	

CAROLA MARIANI MAURIZIO CORBETTA ARCHITETTI - 22044 INVERIGO (CO) VIA MAZZINI N. 3, TEL. 031/609261 FAX 031/3591539 STUDIO TECNICO ASSOCIATO ING. A. BALITRO ARCH. R. RABBIOSI - 23017 MORBEGNO (SO) VIA FABANI N. 45

RELAZIONE TECNICA

Protezione contro i fulmini

Valutazione del rischio e scelta delle misure di protezione

Committente:

Committente: Comune di Colico

Descrizione struttura: Campus Scolastico - Scuola secondaria

Comune: Colico Provincia: LC

SOMMARIO

- 1. CONTENUTO DEL DOCUMENTO
- 2. NORME TECNICHE DI RIFERIMENTO
- 3. INDIVIDUAZIONE DELLA STRUTTURA DA PROTEGGERE
- 4. DATI INIZIALI
 - 4.1 Densità annua di fulmini a terra
 - 4.2 Dati relativi alla struttura
 - 4.3 Dati relativi alle linee esterne
 - 4.4 Definizione e caratteristiche delle zone
- 5. CALCOLO DELLE AREE DI RACCOLTA DELLA STRUTTURA E DELLE LINEE ELETTRICHE ESTERNE
- 6. VALUTAZIONE DEI RISCHI
 - 6.1 Rischio R_1 di perdita di vite umane
 - 6.1.1 Calcolo del rischio R_1
 - 6.1.2 Analisi del rischio R_1
- 7. SCELTA DELLE MISURE DI PROTEZIONE
- 8. CONCLUSIONI
- 9. APPENDICI
- 10. ALLEGATI

Disegno della struttura Grafico area di raccolta AD Grafico area di raccolta AM

1. CONTENUTO DEL DOCUMENTO

Questo documento contiene:

- la relazione sulla valutazione dei rischi dovuti al fulmine;
- la scelta delle misure di protezione da adottare ove necessarie.

2. NORME TECNICHE DI RIFERIMENTO

Questo documento è stato elaborato con riferimento alle seguenti norme:

- CEI EN 62305-1

"Protezione contro i fulmini. Parte 1: Principi generali" Febbraio 2013:

- CEI EN 62305-2

"Protezione contro i fulmini. Parte 2: Valutazione del rischio" Febbraio 2013:

- CEI EN 62305-3

"Protezione contro i fulmini. Parte 3: Danno materiale alle strutture e pericolo per le persone"

Febbraio 2013;

- CEI EN 62305-4

"Protezione contro i fulmini. Parte 4: Impianti elettrici ed elettronici nelle strutture" Febbraio 2013:

- CEI 81-29

"Linee guida per l'applicazione delle norme CEI EN 62305" Febbraio 2014;

- CEI 81-30

"Protezione contro i fulmini. Reti di localizzazione fulmini (LLS).

Linee guida per l'impiego di sistemi LLS per l'individuazione dei valori di Ng (Norma CEI EN 62305-2)"

Febbraio 2014.

3. INDIVIDUAZIONE DELLA STRUTTURA DA PROTEGGERE

L'individuazione della struttura da proteggere è essenziale per definire le dimensioni e le caratteristiche da utilizzare per la valutazione dell'area di raccolta.

La struttura che si vuole proteggere coincide con un intero edificio a sé stante, fisicamente separato da altre costruzioni.

Pertanto, ai sensi dell'art. A.2.2 della norma CEI EN 62305-2, le dimensioni e le caratteristiche della struttura da considerare sono quelle dell'edificio stesso.

4. DATI INIZIALI

4.1 Densità annua di fulmini a terra

La densità annua di fulmini a terra al kilometro quadrato nella posizione in cui è ubicata la struttura vale:

 $N_{\rm g}$ = 5,71 fulmini/anno km²

4.2 Dati relativi alla struttura

La pianta della struttura è riportata nel disegno (Allegato Disegno della struttura).

La destinazione d'uso prevalente della struttura è: scolastico

In relazione anche alla sua destinazione d'uso, la struttura può essere soggetta a:

- perdita di vite umane
- perdita economica

In accordo con la norma CEI EN 62305-2 per valutare la necessità della protezione contro il fulmine, deve pertanto essere calcolato:

- rischio R1;

Le valutazioni di natura economica, volte ad accertare la convenienza dell'adozione delle misure di protezione, non sono state condotte perché espressamente non richieste dal Committente.

L'edificio ha struttura portante metallica o in cemento armato con ferri d'armatura continui.

4.3 Dati relativi alle linee elettriche esterne

La struttura è servita dalle seguenti linee elettriche:

- Linea di energia: Linea elettrica
- Linea di segnale: Linea di segnale

Le caratteristiche delle linee elettriche sono riportate nell'Appendice *Caratteristiche delle linee elettriche*.

4.4 Definizione e caratteristiche delle zone

Tenuto conto di:

- compartimenti antincendio esistenti e/o che sarebbe opportuno realizzare;
- eventuali locali già protetti (e/o che sarebbe opportuno proteggere specificamente) contro il LEMP (impulso elettromagnetico);
- i tipi di superficie del suolo all'esterno della struttura, i tipi di pavimentazione interni ad essa e l'eventuale presenza di persone;
- le altre caratteristiche della struttura e, in particolare il lay-out degli impianti interni e le misure

di protezione esistenti;

sono state definite le seguenti zone:

Z1: Struttura

Le caratteristiche delle zone, i valori medi delle perdite, i tipi di rischio presenti e le relative componenti sono riportate nell'Appendice *Caratteristiche delle Zone*.

5. CALCOLO DELLE AREE DI RACCOLTA DELLA STRUTTURA E DELLE LINEE ELETTRICHE ESTERNE

L'area di raccolta AD dei fulmini diretti sulla struttura è stata valutata graficamente secondo il metodo indicato nella norma CEI EN 62305-2, art. A.2, ed è riportata nel disegno (Allegato *Grafico area di raccolta AD*).

L'area di raccolta AM dei fulmini a terra vicino alla struttura, che ne possono danneggiare gli impianti interni per sovratensioni indotte, è stata valutata graficamente secondo il metodo indicato nella norma CEI EN 62305-2, art. A.3, ed è riportata nel disegno (Allegato *Grafico area di raccolta AM*).

Le aree di raccolta AL e AI di ciascuna linea elettrica esterna sono state valutate analiticamente come indicato nella norma CEI EN 62305-2, art. A.4 e A.5.

I valori delle aree di raccolta (A) e i relativi numeri di eventi pericolosi all'anno (N) sono riportati nell'Appendice *Aree di raccolta e numero annuo di eventi pericolosi*.

I valori delle probabilità di danno (P) per il calcolo delle varie componenti di rischio considerate sono riportate nell'Appendice *Valori delle probabilità P per la struttura non protetta*.

6. VALUTAZIONE DEI RISCHI

6.1 Rischio R1: perdita di vite umane

6.1.1 Calcolo del rischio R1

I valori delle componenti ed il valore del rischio R1 sono di seguito indicati.

Z1: Struttura RA: 7,90E-10 RB: 7,90E-07

RU(Impianto elettrico): 2,34E-15 RV(Impianto elettrico): 2,34E-10 RU(impianto di segnale): 2,11E-12 RV(impianto di segnale): 2,11E-07

Totale: 1,00E-06

Valore totale del rischio R1 per la struttura: 1,00E-06

6.1.2 Analisi del rischio R1

Il rischio complessivo R1 = 1,00E-06 è inferiore a quello tollerato RT = 1E-05

7. SCELTA DELLE MISURE DI PROTEZIONE

Poiché il rischio complessivo R1 = 1,00E-06 è inferiore a quello tollerato RT = 1E-05, non occorre adottare alcuna misura di protezione per ridurlo.

8. CONCLUSIONI

Rischi che non superano il valore tollerabile: R1 SECONDO LA NORMA CEI EN 62305-2 LA PROTEZIONE CONTRO IL FULMINE NON E' NECESSARIA.

Data 14/09/2015

Timbro e firma

9. APPENDICI

APPENDICE - Caratteristiche della struttura

Dimensioni: vedi disegno

Coefficiente di posizione: in area con oggetti di altezza uguale o inferiore (CD = 0.5)

Schermo esterno alla struttura: assente

Densità di fulmini a terra (fulmini/anno km²) Ng = 5,71

APPENDICE - Caratteristiche delle linee elettriche

Caratteristiche della linea: Linea elettrica

La linea ha caratteristiche uniformi lungo l'intero percorso

Tipo di linea: energia - interrata

Lunghezza (m) L = 100

Resistività (ohm x m) $\rho = 400$

Coefficiente ambientale (CE): urbano

SPD ad arrivo linea: livello I (PEB = 0.01)

Caratteristiche della linea: Linea di segnale

La linea ha caratteristiche uniformi lungo l'intero percorso

Tipo di linea: segnale - interrata

Lunghezza (m) L = 1000

Resistività (ohm x m) $\rho = 400$

Coefficiente ambientale (CE): urbano

Schermo collegato alla stessa terra delle apparecchiature alimentate: $1 < R \le 5$ ohm/km

APPENDICE - Caratteristiche delle zone

Caratteristiche della zona: Struttura

Tipo di zona: interna

Tipo di pavimentazione: linoleum (rt = 0.00001)

Rischio di incendio: ordinario (rf = 0.01)

Pericoli particolari: ridotto rischio di panico (h = 2)

Protezioni antincendio: manuali (rp = 0.5)

Schermatura di zona: assente

Protezioni contro le tensioni di contatto e di passo: isolamento

Impianto interno: Impianto elettrico

Alimentato dalla linea Linea elettrica

Tipo di circuito: Cond. attivi e PE nello stesso cavo (spire fino a 0.5 m^2) (Ks3 = 0.01)

Tensione di tenuta: 6,0 kV

Sistema di SPD - livello: II (PSPD = 0,02)

Impianto interno: impianto di segnale

Alimentato dalla linea Linea di segnale

Tipo di circuito: Cavo schermato o canale metallico (Ks3 = 0,0001)

Tensione di tenuta: 1,0 kV

Sistema di SPD - livello: Assente (PSPD =1)

Valori medi delle perdite per la zona: Struttura

Rischio 1

Tempo per il quale le persone sono presenti nella struttura (ore all'anno): 1800 Perdita per tensioni di contatto e di passo (relativa a R1) LA = LU = 2,05E-08

Perdita per danno fisico (relativa a R1) LB = LV = 2,05E-05

Rischio 4

Valore dei muri (€): 2000000 Valore del contenuto (€): 300000

Valore degli impianti interni inclusa l'attività (€): 150000

Valore totale della struttura (€): 2450000

Perdita per avaria di impianti interni (relativa a R4) LC = LM = LW = LZ = 6,12E-05

Perdita per danno fisico (relativa a R4) LB = LV = 1,00E-03

Rischi e componenti di rischio presenti nella zona: Struttura

Rischio 1: Ra Rb Ru Rv

Rischio 4: Rb Rc Rm Rv Rw Rz

APPENDICE - Frequenza di danno

Frequenza di danno tollerabile FT = 0,1

Non è stata considerata la perdita di animali

Applicazione del coefficiente rf alla probabilità di danno PEB e PB: no Applicazione del coefficiente rt alla probabilità di danno PTA e PTU: no

FS1: Frequenza di danno dovuta a fulmini sulla struttura

FS2: Frequenza di danno dovuta a fulmini vicino alla struttura

FS3: Frequenza di danno dovuta a fulmini sulle linee entranti nella struttura

FS4: Frequenza di danno dovuta a fulmini vicino alle linee entranti nella struttura

Zona

Z1: Struttura FS1: 3,85E-02 FS2: 1,73E-07 FS3: 1,13E-02 FS4: 2,28E-04

Totale: 5,00E-02

APPENDICE - Aree di raccolta e numero annuo di eventi pericolosi

Struttura

Area di raccolta per fulminazione diretta della struttura $AD = 1,35E-02 \text{ km}^2$ Area di raccolta per fulminazione indiretta della struttura $AM = 4,63E-01 \text{ km}^2$ Numero di eventi pericolosi per fulminazione diretta della struttura ND = 3,85E-02Numero di eventi pericolosi per fulminazione indiretta della struttura NM = 2,64E+00

Linee elettriche

Area di raccolta per fulminazione diretta (AL) e indiretta (AI) delle linee:

Linea elettrica $AL = 0.004000 \text{ km}^2$ $AI = 0.400000 \text{ km}^2$

Linea di segnale $AL = 0.040000 \text{ km}^2$ $AI = 4.000000 \text{ km}^2$

Numero di eventi pericolosi per fulminazione diretta (NL) e indiretta (NI) delle linee:

Linea elettrica NL = 0,001142 NI = 0,114200

Linea di segnale NL = 0,011420 NI = 1,142000

APPENDICE - Valori delle probabilità P per la struttura non protetta

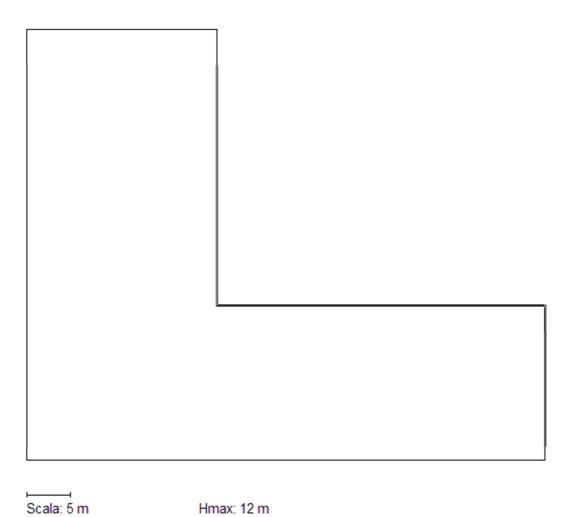
Zona Z1: Struttura
PA = 1,00E+00
PB = 1,0
PC (Impianto elettrico) = 2,00E-02

PC (impianto di segnale) = 1,00E+00

PC = 1,00E+00

PM (Impianto elettrico) = 5,56E-08 PM (impianto di segnale) = 1,00E-08

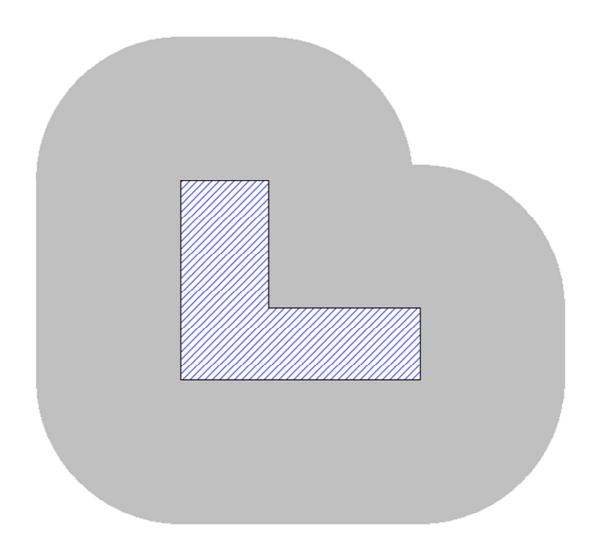
PM = 6,56E-08


PU (Impianto elettrico) = 1,00E-04

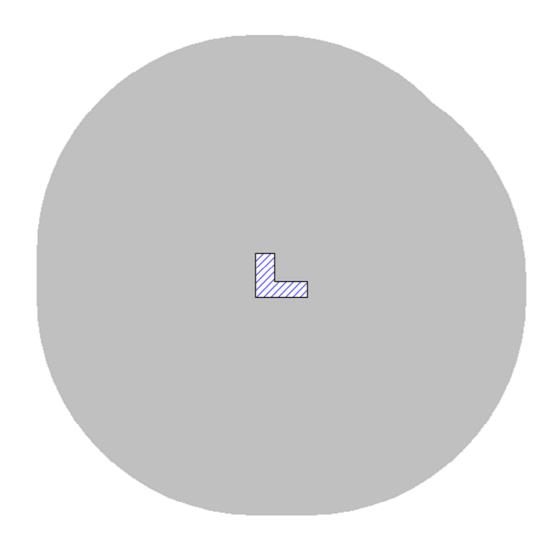
PV (Impianto elettrico) = 1,00E-02

PW (Impianto elettrico) = 2,00E-02 PZ (Impianto elettrico) = 2,00E-03

PU (impianto di segnale) = 9,00E-03 PV (impianto di segnale) = 9,00E-01 PW (impianto di segnale) = 9,00E-01 PZ (impianto di segnale) = 0,00E+00


Allegato - Disegno della struttura

Hmax: 12 m


Allegato - Area di raccolta per fulminazione diretta AD

Area di raccolta AD $(km^2) = 1,35E-02$

Allegato - Area di raccolta per fulminazione indiretta AM

Area di raccolta AM (km²) = 4,63E-01

